

Third-Party Connectors

May, 2016.

2

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

Contents

Introduction ... 3

Implementation Overview ... 3

IDE Integration / Classpath .. 3

Java Version ... 3

Connector Functional Restrictions ... 4

Application-Level Filtering & Aggregations .. 4

Custom Error Messages ... 4

Defining a Data Source .. 5

DataSource Function Definitions .. 6

Recommendations for using saveBlob() and loadBlob() ... 9

Defining a Data Set .. 10

DataSet Function Definitions .. 11

Defining Connector Metadata ... 15

MetaData Function Definitions .. 16

Packaging a Connector for Yellowfin .. 20

Appendix .. 21

DataType .. 21

FieldType .. 21

AggregationType .. 22

FilterOperator .. 22

Parameter DataType .. 23

Display Type ... 23

3

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

Introduction

Third-Party Connectors allow for Yellowfin to connector to any data source and return tabular data
that can be consumed and displayed as tables and charts.

Data can be retrieved from any source via file access, API access, or data that is embedded in the
connector itself. Most implementations are expected to make use of web service APIs, third-party

web applications, and SAAS providers.

Implementation Overview

Implementation is done by extending Yellowfin’s third-party java interface.

Each implementation consists of a single AbstractDataSource class. This contains details about
how the connection is made, and prompts the user for required connection information. The

DataSource can also contain a reference to a background job that can perform tasks on a
scheduled basis. This schedule is defined in an implementation of a ScheduleDefinition class.

Each DataSource can have many DataSets available within it. Each DataSet is an
implementation of an AbstractDataSet class. These can be thought of as views. A report can

only be written against a single DataSet. A DataSet will have several columns and filters defined

and will return a result set to Yellowfin.

A metadata class is also required. This will allow for a connection wizard to be defined, and prompt

the end user for the required parameters to make a connection to the third-party source. This is an

implementation of a JDBCMetaData class.

IDE Integration / Classpath

The definitions for the required Yellowfin classes are available in the following libraries from a
standard Yellowfin installation. These are located in the /appserver/webapps/ROOT/WEB-

INF/lib/ directory of the installation.

 i4-cor.jar

 i4-mi.jar

These are dependencies that are required to compile a connector plugin for Yellowfin. Referencing
these libraries in an IDE will also allow for code-completion and function lookups while editing.

Java Version

Yellowfin 7.2 has backwards compatibility to Java 6. Any connectors made for public consumption
should be compiled with Java 6, unless a connector’s dependencies force the use of a newer Java

implementation. The plugin loader will display an error reporting that the version of Java is not

sufficient if the loaded .jar file is compiled with a newer version that what is in use by Yellowfin.

4

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

Connector Functional Restrictions

There are several functional restrictions when using Third-Party Connectors compared to the
features available for relational SQL sources.

As of Yellowfin 7.2 the limitations to Third-Party Connector reports include;

 Multiple DataSets cannot be joined. Reports can be written against a single DataSet only.

 Calculated Fields and Custom Functions are unavailable.

 Sub Query functionality, both basic and advanced, are unavailable.

 Drill Down functionality is unavailable.

 Grouped Value functionality is unavailable.

 Complex Connector Filter logic is unavailable. Multiple connector-level filters are all
applied with logical ANDs. Bracketing and logical ORs cannot be used to change filter logic

on a report. Application-level filters do not have these restrictions.

Many of these features can be enabled with Yellowfin 7.2’s Report From Report functionality, which
allows for the creation of a view based on a Third-Party connector report results. Reports written
against this view will have access to all report-level functionality available to relational sources.

Application-Level Filtering & Aggregations

Yellowfin supports application-level filtering and aggregation. This allows Yellowfin to aggregate

and filter data after receiving a result set from a connector.

Application-level aggregation is toggled based on the capabilities of the connector. If any DataSet

columns (as returned by getColumns()) support native aggregations (where the connector
returns aggregated data), then aggregations will be available.

Application-level filtering is also toggled based on the capabilities of columns in the connector. If

any DataSet columns (as returned by getColumns()) support native filtering (where the
connector applies its own filters), then the application-level filtering will be disabled, and only

connector column filters will be available. Connector filters (as returned by getFilters()) can
co-exist with application-level filters.

Custom Error Messages

Custom messages can be returned to the Yellowfin UI if an error occurs whilst running a connector

report. This can be done by throwing a ThirdPartyException() with a custom message from
the connector plugin.

throw new ThirdPartyException("Unable to connect to the Twitter API at this
time.");

The custom error message will be shown as a standard “Oh-No” error where the report would
usually be rendered. This would usually be thrown from the execute() function on a DataSet.

5

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

Defining a Data Source

A connector DataSource is an implementation of the abstract java class AbstractDataSource.
When defining a DataSource the following functions require implementation:

public abstract String getDataSourceName();

 public abstract Collection<AbstractDataSet> getDataSets();

 public abstract JDBCMetaData getDataSourceMetaData();

 public abstract boolean authenticate() throws Exception;

 public abstract void disconnect();

 public abstract Map<String, Object> testConnection() throws Exception

The following functions can optionally be overwritten:

public ScheduleDefinition getScheduleDefinition();

public boolean autoRun() { return true; };

The following functions are available as utility functions:

protected final byte[] loadBlob(String key);

 protected final boolean saveBlob(String key, byte[] data);

protected final boolean areBlobsAvailable();

 public final Object getAttribute(String key);

public final Integer getSourceId();

6

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

DataSource Function Definitions

public abstract String getDataSourceName();

Return a DataSourceName as a String.

public abstract Collection<AbstractDataSet> getDataSets();

Return the collection of DataSets that are available in this DataSource. See the DataSet section for

defining a DataSet.

public abstract JDBCMetaData getDataSourceMetaData();

Return the connection meta-data required for this DataSource. See the MetaData section for
defining Meta Data for a Data Source.

public abstract boolean authenticate() throws Exception;

Return true or false depending on whether authentication against the data source was successful.

This can return true if this is not required.

public abstract void disconnect();

disconnect() is called when the connection to the connector is closed. Perform any clean up here.
This function can do nothing if it is not required.

public abstract Map<String, Object> testConnection() throws Exception

Return a map of text entries to be displayed on a successful connection test. The key to the Map is
the description shown on the connection test within the Yellowfin UI.

An error message can be displayed if the connection test was not successful. The key to the Map in

this case should be “ERROR”, with a description of the error stored in the Map value.

public ScheduleDefinition getScheduleDefinition();

Return a ScheduleDefinition for when the background task should run for this connector. A
ScheduleDefinition is instantiated with:

7

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

public ScheduleDefinition(FrequencyTypeCode frequencyTypeCode, String
frequencyCode, Integer frequencyUnit);

Each frequencyTypeCode is defined below. For any type that requires n, that value is defined in

the frequencyUnit.

frequencyUnit Description

MINUTES Run every n minutes.

DAILY Run every day.

WEEKLY Run once a week, on the nth day of the week.

FORTNIGHTLY Run once a fortnight, where frequencyCode is ONE or TWO, specifying the

week in the fortnight, and the nth day of that week.

MONTHLY Run once a month on the nth day of the month.

ENDOFMONTH Run at the end of the month.

QUARTERLY Run once a quarter, where frequencyCode is ONE, TWO, or THREE,

specifying the month within the quarter, and the nth day of the month.

BIANNUAL Run once every six months, where frequencyCode is ONE, TWO, THREE,
FOUR, FIVE, or SIX, specifying the month within the half year, and the nth day
of that month.

ANNUAL Run once a quarter, where frequencyCode is JANUARY, FEBRUARY, MARCH,
APRIL, MAY, JUNE, JULY, AUGUST, SEPTEMBER, OCTOBER, NOVEMBER,
DECEMBER, specifying the month of the year, and the nth day of the month.

For example, to create a schedule for running background tasks once a week on Sunday:

public ScheduleDefinition getScheduleDefinition() {

return new ScheduleDefinition(“WEEKLY”, null, 1);

}

To create a schedule for running background tasks every hour:

public ScheduleDefinition getScheduleDefinition() {

 return new ScheduleDefinition(“MINUTES”, null, 60);

}

8

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

public boolean autoRun();

autoRun is the called to perform any background tasks. This function is called based on the
getScheduleDefinition(). This could be used to download and cache data locally.

protected final byte[] loadBlob(String key);

loadBlob() will load a blob (byte[]) that was previously saved by the connector, usually in a
background task. The parameter key is a unique identifier for the data to load. Blobs can only be
loaded on data sources that have been saved. areBlobsAvailable() can be used to see if blob access is
available.

protected final boolean saveBlob(String key, byte[] data);

saveBlob() allows for saving a blob (byte[]) for later use. This is a way of saving data from background
tasks for later use. The parameter key is the unique identifier for the data to be saved. data is the
byte[] to be associated with that key. Writing null to data will delete the saved data for the specified
key. Blobs can only be loaded on data sources that have been saved. areBlobsAvailable() can be used
to see if blob access is available.

protected final boolean areBlobsAvailable();

Blobs can only be loaded on data sources that have been saved. areBlobsAvailable() can be used to
see if blob access is available. Blob access will not be available if a connector is tested prior to being
saved.

public final Object getAttribute(String key);

getAttribute() allows for fetching attributes from the connection meta-data. For example, a
Username may be specified for the connection through the Yellowfin UI. Using the key of the
parameter, the contents of the Username meta-data field can be fetched for use when retrieving
data from external APIs.

public final Integer getSourceId();

getSourceId() can be used to fetch the unique internal id of source that this connector is associated
with. This may be helpful for segregating data by connection in some kind of external cache or
database.

9

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

Recommendations for using saveBlob() and loadBlob()

Minimise Stored/Cached Data

It is recommended to only store data that cannot be retrieved from an external source reliably.

This could be in the case of “sliding window” access to data, where only a limited amount of
historical data is available, and this needs to be downloaded prior to it becoming unavailable.

Extremely slow data sets can also use locally stored data sets to improve query speed.

If significant amounts of data are stored in the blob system, it is recommended to truncate the
data after a certain period. This might mean deleting all data when it reaches a certain age, or

storing less granular information for older data. For instance, store raw data for three months,
daily aggregated data for one year, and weekly aggregated data for older data. To achieve this, a
background job would need to re-aggregate and re-store the data.

Minimise Blob Size

There is significant load induced on the Yellowfin database and server when storing and loading

large sized blobs. If possible, distribute stored data across multiple blobs.

For instance, there may be an instance where 100,000 tweets are stored in the blob storage

system. This might be stored with the key “ALL_TWEETS”. However to minimize loading times of

blobs, and to not overload the caching system, this could be split and stored in smaller chunks.

One way to do this would be to split up tweets by month:

"201601_TWEETS"

"201602_TWEETS"

"201603_TWEETS"

"201604_TWEETS"

When a query is requested from the connector, filters can be used to determine which blobs need

to be used, and thus loaded from the blob storage system. A query with the specified date range of

2016-02-05 to 2016-03-05 would just need to load the data for February and March,
“201602_TWEETS” and “201603_TWEETS”.

There may be significant overhead required to join datasets from blobs. It is recommended that

this be taken into consideration and to compare the performance of multiple smaller blobs versus
larger ones.

There is no ideal size for blobs. The loading speed of blobs from the Yellowfin database will be
dependent on the hardware and DBMS used. Public connectors will be used on Yellowfin

installations of all sizes, so smaller, less powerful systems should be taken into consideration.

10

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

Defining a Data Set

A connector DataSet is an implementation of abstract java class AbstractDataSet. When
defining a DataSet the following functions require implementation:

public abstract String getDataSetName();

 public abstract List<ColumnMetaData> getColumns();

 public abstract List<FilterMetaData> getFilters();

public abstract Object[][] execute(List<ColumnMetaData> columns,
List<FilterData> filters);

 public abstract boolean getAllowsDuplicateColumns();

public abstract boolean getAllowsAggregateColumns();

Other functions that can be overridden:

public boolean isFilterValueEnabled(String filter);

public List<Object> getFilterValues(String filter, HashMap<String,
FilterData> appliedFilters);

11

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

DataSet Function Definitions

public abstract String getDataSetName();

Return a DataSetName as a String. This should not be internationalised.

public abstract List<ColumnMetaData> getColumns();

Return a collection of ColumnMetaData objects that define the columns that are available in the

DataSet. A column can also be defined to be used as a filter.

ColumnMetaData objects require the following meta-data to be defined:

Attribute Description

columnName Name of the column. This should be unique and should not be
internationalised. User friendly names and internationalisation
can be applied at the Yellowfin metadata level.

columnType DataType of the column.

See DataType in the appendix for more information.

fieldType FieldType of the column.

See FieldType in the appendix for more information.

availableAggregations Array of AggregationType. This defines the aggregations that can
be applied to this column.

See AggregationType in the appendix for more information.

availableFilterOperators Array of FilterOperator. This defines the operators that can be
applied to this column if it is used as a filter. If this column cannot

be used as a filter is should be set as null.

See FilterOperator in the appendix for more information.

There are multiple constructors for ColumnMetaData, that allow for defining this object with a
single line of Java code.

12

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

public abstract List<FilterMetaData> getFilters();

Return a collection of FilterMetaData objects that define the filters that are available in the
DataSet. A filter in this context is a parameter that can be used for a report, it does not return data
like a column does.

FilterMetaData objects require the following meta-data to be defined:

Attribute Description

filterName Name of Filter. This should be unique and should not be

internationalised. User friendly names and internationalisation can
be applied at the Yellowfin metadata level.

filterType FilterType of the column.

See FilterType in the appendix for more information.

Mandatory Define whether this filter is mandatory or not. Data cannot be
returned from this DataSet without this filter being set.

availableAggregations Array of AggregationType. This defines the aggregations that can be

applied to this filter. Currently unsupported.

See AggregationType in the appendix for more information.

availableOperators Array of FilterOperator. This defines the operators that can be applied

to this filter.

See FilterOperator in the appendix for more information.

There are multiple constructors for FilterMetaData, that allow for defining this object with a single
line of Java code.

public abstract Object[][] execute(List<ColumnMetaData> columns, List<FilterData>
filters);

Returns the result set from this DataSet. This is the main function for processing the query. The
parameter column specifies the columns that have been chosen for the query from Yellowfin. The
parameter filters specifies the filters that have been assigned to the query from Yellowfin. The
function must return a 2 dimensional object array with the contents of the columns requested.

The parameter column is of the type ColumnMetaData. This has information about the columns
selected and any aggregation modifiers that have been made to those columns.

The ColumnMetaData function getSelectedAggregation() returns the selected aggregation
applied to a column. This is of type AggregationType.

13

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

The parameter filters is of the type FilterData. This has information about the filters selected and the
values that have been assigned to them. FilterData has the following attributes:

Attribute Description

filterName Name of the filter or column that this filter represents.

metaData FilterMetaData of filter. This will be a link to the FilterMetaData object
that was defined in getFilters() or FilterMetaData object that is
created automatically to wrap a column that supports filtering.

filterValue The value of the filter. This is a java Object that holds the data for the
datatype of the filter. Filters that hold multiple values will be returned
in a Java List. This is for filters using Between, Not Between and In List
and Not In List.

filterOperator Instance of type FilterOperator. This defines the operator that has been
applied to this filter.

aggregationType Instance of type AggregationOperator. This defines the operator that
has been applied to this filter.

A custom error message can be show if an error occurs by throwing a ThirdPartyException().
See Custom Error Messages.

public abstract boolean getAllowsDuplicateColumns();

Return whether or not this Data Set supports the same column being selected more than once.

If this returns true, then the Data Set will be sent duplicate columns via the execute function, if they
are required.

If this is set to false, then only a single instance of each column will be sent to the execute function
and Yellowfin will duplicate repeated columns after receiving the data.

public abstract boolean getAllowsAggregateColumns();

Return whether or not this Data Set supports native aggregations.

If this is false, then Yellowfin will enable application level aggregations. This will allow for Yellowfin to
aggregate data once it has been returned from the DataSet.

If this is true, then the DataSet must return aggregated data when requested. Columns can be
defined with what aggregations can be applied to them during report creation. This is defined in
getColumns().

14

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

public boolean isFilterValueEnabled(String filter);

Return whether filter values can be returned for a particular filter (or column filter). Returning true
will mean that calling getFilterValues() will return a list of values for this filter.

public List<Object> getFilterValues(String filter, HashMap<String, FilterData>

appliedFilters);

If isFilterValueEnabled() returns true for a given filter name, then this function will be called
to return a Java List of available filter options for user selection. The parameter appliedFilters will
hold a Map (keyed by filtername) that holds the values of other filters that are currently set. This
information can be used to further restrict the values returned by this function.

15

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

Defining Connector Metadata

The Connector MetaData is an implementation of abstract java class JDBCMetaData. This defines
what connection details need to be prompted to the user for creating a connection to a third-party

source. This may include parameters like usernames, tokens, hostnames, ports, account names
etc.

Basically, the JDBCMetaData class is used for building a connection wizard for a DataSource. The
followfing functions need to be implemented to create a basic connection wizard:

public JDBCMetaData();

public void initialiseParameters();

public String buttonPressed(String buttonName) throws Exception;

Helper functions that are also accessible in JDBCMetaData:

protected final void addParameter(Parameter p);

public void setParameterValue(String key, Object value);

public final Object getParameterValue(String key);

public boolean isParameterRequired(String key);

public boolean hasDependentParameters(String key);

16

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

MetaData Function Definitions

public JDBCMetaData(); (Constructor)

The following attributes should be set in the constructor:

Attribute Description

sourceName Text name for the DataSource. For example “Twitter Connector”.

sourceCode A unique text code for the DataSource. For example
“TWITTER_CONNECTOR”.

driverName The text class name of the DataSource. For example
“com.code.TwitterConnector”

sourceType This should always be

DBType.THIRDPARTY

Example implementation:

public SkiTeamMetaData() {

 super();

 sourceName = "Ski Team Source";

 sourceCode = "SKI_DATA_SOURCE";

 driverName = SkiTeamDataSource.class.getName();

 sourceType = DBType.THIRD_PARTY;

}

17

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

public void initialiseParameters();

This function is where parameters should be registered. Registered parameters will be displayed to
the user when creating a connection with this DataSource. Use the function addParameter() to
add required parameters.

Example implementation:

public void initialiseParameters() {

super.initialiseParameters();

 addParameter(new Parameter("HELP", "Connection Details", "Text",
TYPE_NUMERIC, DISPLAY_STATIC_TEXT, null, true));

 Parameter p = new Parameter("URL", "1. Request Access PIN", "Connect
to twitter to receive a PIN for data access",TYPE_UNKNOWN,
DISPLAY_URLBUTTON, null, true);
 p.addOption("BUTTONTEXT", "Request URL");
 p.addOption("BUTTONURL", "http://google.com");
 addParameter(p);

 addParameter(new Parameter("PIN", "2. Enter PIN", "Enter the PIN
recieved from Twitter", TYPE_NUMERIC, DISPLAY_TEXT_MED, null, true));

p = new Parameter("POSTPIN", "3. Validate Pin", "Validate the PIN",
TYPE_TEXT, DISPLAY_BUTTON, null, true);
 p.addOption("BUTTONTEXT", "Validate PIN");
 addParameter(p);

 addParameter(new Parameter("ACCESSTOKEN", "Access Token",
"AccessToken that allows access to the Twitter API", TYPE_TEXT,
DISPLAY_PASSWORD, null, true));

 addParameter(new Parameter("ACCESSTOKENSECRET", "Access Token
Secret", "AccessToken Password that allows access to the Twitter
API", TYPE_TEXT, DISPLAY_PASSWORD, null, true));

 }

18

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

protected final void addParameter(Parameter p);

Parameter objects require the following meta-data to be defined:

Attribute Description

uniqueKey Text Unique Key for this parameter.

displayName Text description. This can be internationalised.

description Parameter description. This can be internationalised.

defaultValue Object to be assigned as the default value for this parameter.

displayType DisplayType for this parameter.

See DisplayType in appendix for more information.

dataType DataType for this parameter.

See Parameter DataType in appendix for more information.

There are multiple constructors for Class Parameter, that allow for defining this object with a

single line of Java code.

Some parameter display types require additional options, such as dropdown boxes and radio

buttons. These need to be added to the parameter object after instantiation. For example:

Parameter p = new Parameter("URL", " Access PIN", "Connect to twitter to
receive a PIN for data access",TYPE_UNKNOWN, DISPLAY_URLBUTTON, null,
true);

p.addOption("BUTTONTEXT", "Request URL");

p.addOption("BUTTONURL", "http://google.com");

addParameter(p);

public String buttonPressed(String buttonName) throws Exception;

This is a call-back for button UI elements. The function parameter buttonName holds the unique
key for the button that called the callback function.

A button callback may be used to change the values of other parameters programmatically. A
parameter can be set with setParameterValue(String key, String value).

19

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

public void setParameterValue(String key, Object value);

Set the value of the parameter. Where function parameter key is the unique key of the parameter
to be set and value is the value to assign to it.

public final Object getParameterValue(String key);

Get the value of a parameter. Where the function parameter key is the unique key of the parameter
value to fetch.

public boolean isParameterRequired(String key);

To implement dependent filters the isParameterRequired() function can be overridden. Based on

the values of other parameters, logic can determine whether the parameter with unique key
should be shown.

For example:

public boolean isParameterRequired(String key) {

 if ("DOMAIN".equals(key)) {

 if ("SQL".equals(getParameterValue("WINDOWSAUTH"))) {

 return false;

 }

 }

return true;

}

public boolean hasDependentParameters(String key);

Return true for parameter with unique key if it has dependent parameters. This function is used to

determine whether other parameter’s visibility needs to be updated based on modification of this

parameter’s value.

20

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

Packaging a Connector for Yellowfin

Yellowfin’s plug-in loader will accept standard JAR files, however any dependencies will need to be
loaded individually into the same plug-in group.

An alternative to loading all JAR files individually is to create a YFP package. A YFP package is just a
standard zip file renamed with a “yfp” extension. This will allow the user to load all dependencies

with a single file upload into Yellowfin.

When creating a YFP package all JAR files should be placed in the root of the YFP zip file. Only
external dependencies should be included in the YFP file. Do not include Yellowfin build

dependencies like

Additionally, out-of-the-box content can also be embedded in a YFP file. The out-of-the-box
content is contained in a standard Yellowfin export XML file. This should also be placed in the root
of the YFP zip file, and be renamed to content.xml. Yellowfin will detect this and import this

content when a new data source is created with this DataSource.

21

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

Appendix

DataType

DataType is used for defining the data type for a column or filter.

Type Description

TEXT Text value. A DataSet should return a Java String for this type.

NUMERIC Numeric value. A DataSet should return a Java String for this type.

INTEGER Integer value. A DataSet should return a Java Long or Integer for
this type.

DATE Date value. A DataSet should return a Java java.sql.Date for this
type.

TIMESTAMP Timestamp value. A DataSet should return a Java
java.sql.Timestamp for this type.

SHORT Short integer value. A DataSet should return a Java Long or Integer
for this type.

ARRAY Array. Currently unsupported.

BOOLEAN Boolean value. A DataSet should return a Java Boolean for this
type.

BLOB Blob/Binary value. A DataSet should return a Java byte[] for this
type.

FieldType

FieldType is used for defining the field type for a column or filter.

Type Description

DIMENSION Dimensional Value. The report builder will use dimensional filter
paradigm for this column, and restrict aggregation types to COUNT
and COUNT DISTINCT.

METRIC Metric/Measure value. The report builder will use metric filter
paradigm for this column, and allow all available aggregation types.

UNKNOWN Unknown column type. This should not be used.

22

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

AggregationType

AggregationType is used for defining an aggregation that can be applied to a column or filter.

Type Description

COUNT Count all values of a column.

COUNTDISTINCT Count all distinct values of a column.

AVG Average the values of a column.

MAX Return the maximum value of a column.

MIN Return the minimum value of a column.

SUM Return the sum of the values in the column.

FilterOperator

FilterOperator is used for defining operators for a column or filter.

Type Description

EQUAL Values are equal.

NOTEQUAL Values are not equal.

INLIST Value is within a defined list of values.

NOTINLIST Value is not withing a defined list of values.

GREATER Value is greater than a value.

GREATEREQUAL Value is greater than or equal to a value.

LESS Value is less than a value.

LESSEQUAL Value is less than or equal to a value.

BETWEEN Value is between two bounds.

NOTBETWEEN Value is not between two bounds.

ISNULL Value is null.

ISNOTNULL Value is not null.

23

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

STARTSWITH Text starts with a value.

NOTSTARTSWITH Text does not start with a value.

ENDSWITH Text ends with a value.

NOTENDSWITH Text does not end with a value.

CONTAINS Text contains a value.

NOTCONTAINS Text does not contain a value.

ISEMPTYSTRING Text is empty string.

ISNOTEMPTYSTRING Text is not an empty string.

Parameter DataType

Parameter DataType is used for defining the data stored for a given meta-data parameter. These
are defined as final static integers in the UserInputParameter Class.

Type Description

TYPE_UNKNOWN Unknown Value.

TYPE_NUMERIC Numeric Value.

TYPE_TEXT Text Value.

TYPE_PASSWORD Password Value.

TYPE_BOOLEAN Boolean Value.

Display Type

DisplayType is used for defining how data will be shown in the connection meta-data wizard.
These are defined as final static integers in the UserInputParameter Class.

Type Description

DISPLAY_TEXT_TINY Short text input box.

DISPLAY_TEXT_MED Medium length text input box.

DISPLAY_TEXT_MED_LONG Medium-long text input box.

DISPLAY_TEXT_LONG Long text input box.

24

Copyright Yellowfin International Pty Ltd 2016 www.yellowfinbi.com

DISPLAY_SELECT Select dropdown input box. This type of parameter requires
additional options. Options are added to Parameter with
addOption(String Key, String Description). The key
is stored as the parameter value when selected. The description
is shown as a selectable option in a dropdown box.

DISPLAY_RADIO Radio selection input box. This type of parameter requires
additional options. Additional options are rendered as selectable
elements in the UI. Options are added to Parameter with
addOption(String Key, String Description). The key
is stored as the parameter value when selected. The description
is shown next to the selectable radio button.

DISPLAY_HIDDEN Hidden input box.

DISPLAY_BUTTON Button. This type of parameter requires additional options. This
UI element makes a callback to the buttionPressed()
function in the JDBCMetaData Class. Additional option
“BUTTONTEXT” is used for setting the text shown on the button.

DISPLAY_STATIC_TEXT Displays static text. The long description of the parameter will be
displayed as static text.

DISPLAY_URLBUTTON Button with a link to an external URL. This type of parameter
requires additional options. Additional option “BUTTONTEXT” is
used for setting the text shown on the button. Additional option
“BUTTONURL” is used for setting the URL that the button links to.

DISPLAY_PASSWORD Password input box.

